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Abstract: 1 

We confront four model systems in three configurations (LSM, LSM+GCM, and 2 

reanalysis) with global flux tower observations to validate states, surface fluxes, and 3 

coupling indices between land and atmosphere. Models clearly under-represent the 4 

feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-5 

atmosphere coupling), and may over-represent the connection between soil moisture and 6 

surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal 7 

variability relative to observations, which is at least partially an artifact of the differences 8 

in spatial scale between model grid boxes and flux tower footprints. All models bias high in 9 

near-surface humidity and downward shortwave radiation, struggle to represent 10 

precipitation accurately, and show serious problems in reproducing surface albedos. These 11 

errors create challenges for models to partition surface energy properly and errors are 12 

traceable through the surface energy and water cycles. The spatial distribution of the 13 

amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but 14 

the biases in means tend to reflect in these amplitudes. Interannual variability is also a 15 

challenge for models to reproduce. Our analysis illuminates targets for coupled land-16 

atmosphere model development, as well as the value of long-term globally-distributed 17 

observational monitoring.  18 

19 
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1. Introduction 20 

Many LSMs were developed and pressed into service during the 1980s and 1990s to 21 

provide lower boundary conditions for the atmospheric GCMs used in climate and weather 22 

simulation and prediction (Santanello et al. 2017). This occurred at a time when 23 

observations of key land surface variables, and the coupled processes that link the water 24 

and energy cycles between the land and atmosphere, were extremely limited. As a result, 25 

performance of coupled LSM-GCM systems has been sub-optimal (Dirmeyer et al. 2017).  26 

The necessary observational data sets for validation are only recently becoming 27 

available; datasets that combine co-located measurements of land surface states, surface 28 

fluxes, near-surface meteorology, and properties of the atmospheric column. Early field 29 

campaigns (e.g., Sellers et al. 1992, 1995; Famiglietti et al. 1999; Jackson and Hsu 2001; 30 

Andreae 2002) provided observations that helped advance theory and model 31 

parameterization development, but their short periods of operation meant collected data 32 

provided limited sampling of the phase-space of land-atmosphere interactions, rarely 33 

quantifying interannual variability. In the mid-1990s, networks of observing stations began 34 

to be established and maintained, providing long-term data sets. A growing number of soil 35 

moisture monitoring networks have been established. Their data have been collated, 36 

homogenized and standardized by two separate efforts (Dorigo et al. 2011, 2013, 2017; 37 

Quiring et al. 2016). Those data sets were used by Dirmeyer et al. (2016) in a first-of-its-38 

kind multi-model multi-configuration assessment of soil moisture simulation fidelity.  39 

Simultaneously, efforts began in the ecological community to collect surface flux data 40 

over a variety of biomes (FLUXNET; Baldocchi et al 2001). Over time, in consultation with 41 

interested scientific communities, FLUXNET expanded their instrumentation suite to 42 

measure soil moisture, ground heat flux, and four-component radiation, allowing detailed 43 
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closure of the surface energy balance. Rigid standards for data formatting and 44 

dissemination within and across regional networks was lacking, so a global standardized 45 

and quality-controlled subset of data from many FLUXNET sites was produced (“La Thuile 46 

FLUXNET dataset”, cf. http://www.fluxdata.org) covering multiple links in the coupled 47 

land-atmosphere process chain (Santanello et al. 2011). The La Thuile data set enabled a 48 

greater degree of model validation (e.g., Williams et al. 2009; Bonan et al. 2012; Boussetta 49 

et al. 2013; Melaas et al. 2013; Balzarolo et al. 2014; Purdy et al. 2016). 50 

In this study, we employ the updated FLUXNET2015 synthesis data set, (Pastorello et al. 51 

2017) expanding the multi-model multi-configuration study of soil moisture simulations in 52 

Dirmeyer et al. (2016) to a global assessment of surface energy and water balance 53 

simulations, and basic metrics of land-atmosphere coupling. Section 2 describes the 54 

observational data and models examined. The next three sections present validations of 55 

model annual means, annual cycles, and coupling metrics. We then discuss some of the 56 

pathological model behaviors that emerge from the analysis and present conclusions. 57 

Throughout the paper we present synthesis figures. Detailed scatter plots showing results 58 

across all FLUXNET2015 sites for each model are consigned to the Supplement.  59 

 60 

2. Data and Models  61 

The range of dates of data varies considerably among model simulations, and also 62 

between individual observational sites. We analyze spatial variability and compare only 63 

climatologies (annual means or mean annual cycles) in order to minimize the effect of such 64 

asynchronicities, and present a quantification of interannual variability. It is not the intent 65 

of this study to validate model simulations of specific events, but rather their overall 66 

coupled land-atmosphere behavior. Note also that many coupling metrics, including those 67 
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used here, can be calculated for LSMs from a combination of forcing and model output, 68 

even though the LSMs are not coupled to GCMs.  69 

2.1 Observed data 70 

In situ measurements of near surface meteorological variables, surface fluxes and soil 71 

moisture used for model validation come from the November 2016 version of the 72 

FLUXNET2015 station data set. Daily, monthly and yearly data have been used; processing 73 

of the meteorological, radiation, heat flux and surface hydrologic data including gap-filling 74 

are described by Reichstein et al. (2005) and Vuichard and Papale (2015). Only the Tier 1 75 

(open access) data are used in this study (see Table S1 for a complete list of sites) – Figure 76 

1 shows the spatial distribution of sites and some of the key characteristics regarding data 77 

availability. 166 sites provide 1242 site-years of data, but coverage is concentrated in the 78 

mid-latitudes and particular underrepresentation in the tropics. 79 

The variables processed for this analysis include surface pressure, near surface air 80 

temperature and vapor pressure deficit, precipitation, four-component and net radiation, 81 

surface sensible and latent heat fluxes (gap-filled following the method of Reichstein et al. 82 

2005 and energy balance closure-corrected) and soil water content measured at the first 83 

(shallowest) sensor. There is no consolidated information on the depth of the shallowest 84 

sensor across all sites, but typically it is at 5cm or 10cm below the surface. Vapor pressure 85 

deficit is converted to specific humidity using the Clausius-Clapeyron relationship. We have 86 

used the provided FLUXNET2015 data at the corresponding time intervals for each 87 

calculation: yearly data for annual means, monthly data for annual cycles, and daily data for 88 

calculating coupling indices.  89 

In addition, we examine a number of gridded global precipitation products for 90 

comparison to FLUXNET2015 sites. These are listed in Table S2.  91 
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2.2 Model systems 92 

Four global modeling systems are evaluated; two from operational forecast centers and 93 

two that are primarily used for research. The operational systems are from the U.S. 94 

National Oceanic and Atmospheric Administration (NOAA) National Centers for 95 

Environmental Prediction (NCEP) and the European Centre for Medium-range Weather 96 

Forecasts (ECMWF). The research systems are from the U.S. National Aeronautics and 97 

Space Administration (NASA) Global Modeling and Assimilation Office (GMAO) and the U.S. 98 

National Center for Atmospheric Research (NCAR). 99 

Table 1 summarizes the model components and configurations. Generally, each 100 

modeling system is interrogated in three different configurations: 1) LSM only (offline), 101 

driven by gridded observationally-based meteorological analyses including downward 102 

radiation; 2) LSM coupled to GCM in a free-running mode where the coupled system 103 

evolves unconstrained after initialization; 3) Reanalysis, where the coupled LSM and GCM 104 

are constrained by data assimilation at diurnal or sub-diurnal increments to represent the 105 

actual historical evolution of state variables. The NCAR model system does not have an 106 

associated reanalysis, so to keep the four-by-three matrix filled, two different reanalyses 107 

from GMAO are included. Note that when the coordinates for a FLUXNET2015 site lie 108 

within a model’s ocean grid cell, it is excluded from comparisons for that model. Thus, the 109 

number of stations compared vary from model to model depending on resolution and the 110 

land-sea mask. 111 

2.2.1 NCEP 112 

Data for the offline configuration comes from an author-produced simulation using Noah 113 

LSM version 2.7.1 (Ek et al., 2003, Mitchell, 2005) driven by 3-hourly gridded 114 

meteorological data from the Terrestrial Hydrology Research Group at Princeton 115 
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University (Sheffield et al., 2006). The free-running coupled land-atmosphere simulation 116 

consists of a subset of 48 years from a 420 year long current climate simulation of CFSv2 117 

initialized in 1980 (Shukla et al. 2017). The coupled simulation is unique among the model 118 

systems in that it also includes a coupled ocean component. However, this should have very 119 

little effect on the local coupled land-atmosphere behavior of the model. Years 2101-2148 120 

of the simulation are used, but the calendar dates have no real meaning in a fully coupled 121 

climate model so far from the initial state, wherein attributes such as atmospheric 122 

composition, solar intensity, orbital parameters, etc., are held constant at late 20th century 123 

values. The latest NCEP reanalysis is also examined (CFSR; Saha et al. 2010), which 124 

combines a global land data assimilation system derived from the NASA Land Information 125 

System (LIS; Peters-Lidard et al., 2007), driven by a blended global precipitation analysis 126 

(Xie and Arkin 1997; Xie et al. 2007), used to update the coupled analysis cycle once per 127 

day over the period 1979-2009.  128 

2.2.2 GMAO 129 

Two reanalyses are included for GMAO; version 1 and version 2 of the Modern-Era 130 

Retrospective Analysis for Research and Applications (MERRA; Rienecker et al. 2011, 131 

Reichle et al. 2017a). MERRA data cover the period 1980-2015. MERRA-2 is the current 132 

state-of-the-art reanalysis covering 1980-2015 (Molod et al. 2015, Gelaro et al. 2017), and 133 

is the source of most of the meteorological forcing data for the offline simulation of the 134 

Catchment LSM v25 C05 (GMAO 2015a,b). As part of the MERRA-2 reanalysis, the GCM-135 

generated precipitation is corrected with observations-based precipitation before it 136 

reaches the land surface (Reichle et al. 2017b); the reanalysis meteorological fields thus 137 

feel the observed precipitation rates indirectly through the surface fluxes. Additionally, a 138 

global 36-year offline Catchment simulation on the MERRA grid and a 16-year coupled 139 
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GEOS5-Catchment simulation at half-degree resolution with prescribed observed SSTs 140 

were generated for this comparison. 141 

2.2.3 NCAR 142 

There is no operational reanalysis produced with the NCAR Community Earth System 143 

Model (CESM). However, CESM is widely used for research in the academic community, 144 

and we have generated offline and coupled simulations for this comparison. The offline 145 

simulation uses version 4.5 of the Community Land Model (CLM; Lawrence et al. 2011) 146 

driven with forcing spanning 1991-2010 from version 4 of the blended and gap-filled 147 

CRUNCEP (Viovy 2013) 0.5° data set (available at: 148 

https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CRUNCEP.v4.html) aggregated 149 

to the nominal 1° GCM resolution. A simulation with CLM4.5 coupled to CAM4 in CESM1.2.2 150 

has been produced spanning 1991-2014 with specified climatological SSTs.  151 

2.2.4 ECMWF 152 

The offline simulation from ECMWF is with Cycle 43R1 of the Hydrology Tiled ECMWF 153 

Scheme of Surface Exchanges over Land (HTESSEL) run at ~16km resolution based on a 154 

cubic octahedral global grid (TCo639) for the period 1979-2015. This offline simulation 155 

follows ERA-Interim/land configurations closely (see Balsamo et al. 2015), forced by ERA-156 

Interim meteorology and fluxes with an altitude correction applied to temperature, 157 

humidity and surface pressure. This offline simulation is used to initialized the land state of 158 

the operational ECMWF hindcasts. The coupled simulation comes from the Athena Project 159 

(Kinter et al. 2013) for 1961-2007 where an older version of HTESSEL is coupled to IFS 160 

Cycle 32R3 at a similarly high native horizontal resolution and specified observed SSTs, but 161 

the data has been post-processed to a 1.125° uniform grid. ERA-Interim (Dee et al. 2011), 162 
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spanning 1979-2015, provides the reanalysis configuration of data for the comparison, 163 

which used TESSEL prior to hydrology upgrades. 164 

 165 

3. Annual Means  166 

The comparison of models to FLUXNET2015 observations of annual means amounts to 167 

an assessment of model ability to reproduce global spatial patterns (within the limitations 168 

of the uneven distribution of station locations) of the variables’ time averages. For the 169 

offline LSM simulations, meteorological forcing data are specified from gridded data sets, 170 

so their correlation to FLUXNET2015 observations is not a pure reflection of model 171 

performance as the forcing data constrain LSM behavior. Similarly, for the reanalysis 172 

products, performance reflects a combination of model characteristics, data assimilation 173 

techniques and the distribution and quality of the data assimilated. Assimilation of 174 

observational data constrains the coupled land-atmosphere model behavior to some 175 

degree. While the free-running model simulations provide an unabridged assessment of 176 

model performance, results from the other modes of simulation are nevertheless 177 

enlightening. 178 

As an indicator of observational uncertainty and the impact of comparing model grid 179 

box values to field sites, we first note how a number of gridded observational precipitation 180 

products and the reanalyses validate against precipitation measurements at FLUXNET2015 181 

locations. Figure 2 shows mean (dots) and span (whiskers) of annual precipitation totals, 182 

where the abscissa always corresponds to measurements from the FLUXNET2015 sites. 183 

For most sites, the observational products (top two rows of Fig. 2) cover the entire time 184 

span of FLUXNET2015 observations (see Table S2 for details). All reanalyses (bottom row 185 

of Fig. 2) except CFSR span the FLUXNET2015 period. Several statistics of spatial 186 
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agreement are shown: Pearson’s product moment correlation coefficient (rp), Spearman’s 187 

rank correlation coefficient (rs), root mean square error (RMSE), slope of the best-fit linear 188 

regression of Y on X (Slope) and the fraction of total stations (labeled “Span Diag” in Fig. 2) 189 

where the span of the individual annual totals from the gridded products (vertical 190 

whiskers) overlap the span from FLUXNET2015 sites (horizontal whiskers). The last 191 

statistic tests the possibility that the FLUXNET2015 observations and gridded estimates do 192 

not come from distinct populations, i.e. their ranges overlap. 193 

Estimates from gridded observational data sets, which range in spatial resolution from 194 

0.25° (MSWEP, TRMM) to 2.5° (GPCP), provide a plausible upper bound to the accuracy we 195 

could expect from gridded Earth system models. For the 166 (or fewer) FLUXNET2015 196 

sites compared, which admittedly represent a rather uneven sampling of global terrestrial 197 

precipitation, three observational products score at the top: MSWEP, CPC-Uni and U.Del. 198 

Each has a Pearson’s correlation of nearly 0.8, a rank correlation between 0.8-0.9, and the 199 

highest number of stations whose ranges span the diagonal X=Y line. The lower limit for 200 

RMSE across these sites is about 240mm. Note that all gridded products underestimate the 201 

slope, indicating the inability of large area averages to resolve local variations in average 202 

precipitation. 203 

MERRA-2 performs on par with the best gridded observed products, namely because it 204 

reports a bias corrected precipitation that is used as part of the assimilation process 205 

instead of model-generated precipitation as an input to the LSM (Reichle and Liu 2014). 206 

Thus, it is effectively another gridded observational data set for precipitation. Figure S1 207 

compares the precipitation predicted by the model physical parameterizations in MERRA-2 208 

alongside the corrected version in the same fashion as Fig 2. The correction greatly reduces 209 

bias, cuts RMSE by one third, slightly improves spatial correlations, and increases the 210 
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number of stations spanning the diagonal by 28%. CFSR significantly underperforms other 211 

reanalyses at FLUXNET2015 locations. 212 

Precipitation is among the most difficult quantities for models to simulate. We expect 213 

among near surface meteorological variables the lowest correlations and largest coefficient 214 

of variation for precipitation.  It also has many observationally-based data sets to choose 215 

from, providing a robust estimate of skill to be expected from comparing point 216 

measurements to gridded data sets. Figure 2 provides generous thresholds, particularly for 217 

correlations, to keep in mind when assessing model simulations of the terms of the surface 218 

water and energy balance.  As shown below, correlations of 0.7-0.8 are a challenge for 219 

models to attain for precipitation, as well as some other water and energy budget terms.  220 

Among near surface meteorology (e.g., temperature and specific humidity) and 221 

downward surface fluxes (including shortwave and longwave radiation), precipitation has 222 

the greatest small-scale variability on monthly to annual time scales, and is thus the most 223 

difficult land surface “forcing” to replicate at the FLUXNET2015 sites. Figures S2-S6 show 224 

the scatters and statistics for the models listed in Table 1 for these five variables. Here, the 225 

restriction that the years of the models match those at each FLUXNET2015 site is lifted, and 226 

the climatologies of the complete data sets are compared. Not surprisingly, the global 227 

distribution of annual mean temperature is very well reproduced by the models (Fig. S2), 228 

with 88-96% of the observed variance explained. Observed specific humidity is only 229 

slightly less well correlated among the models (Fig. S3), but there is a consistent positive 230 

bias relative to FLUXNET2015 measurements. Patterns of annual mean downward 231 

radiation (Figs. S4 and S5) are well simulated, with a tendency for a slight negative bias in 232 

longwave radiation (Fig. S5), and a stronger positive bias in shortwave radiation across 233 

models (Fig. S4), consistent with other assessments of model shortwave errors that depend 234 
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on GCM radiative transfer parameterizations (cf. Slater 2016). Precipitation shows the least 235 

agreement; note the bottom row of Fig. S6 is not identical to that of Fig. 2 because the years 236 

compared differ. Nevertheless, the results are similar. We can consider MERRA-2 as 237 

representing the upper limit of comparison for annual precipitation when the periods do 238 

not match between models and observations. Offline Catchment actually performs slightly 239 

better than MERRA-2, and CFSv2 is generally the poorest performing model system in the 240 

set. Free-running climate models understandably perform worse than either reanalyses or 241 

offline LSM simulations, as they are least constrained by observational data. In the case of 242 

CFSv2, there are essentially no constraints within the Earth system as an ocean model is 243 

coupled; other free-running simulations have specified SSTs. 244 

Precipitation is a major source of error at the land surface, but so are elements of the 245 

radiation budget. We employ Taylor diagrams to synthesize the statistics of correlation 246 

across FLUXNET2015 sites; RMSE and standard deviation are normalized by observed 247 

values. Figure 3 shows the global distribution of annual mean downward radiation terms is 248 

well simulated across all model configurations, with downward shortwave radiation 249 

performing slightly better than downward longwave radiation. Recall for the LSM-only 250 

models, downward radiation is an input forcing, and the quality of those data sets can vary 251 

significantly (Slater 2016). However, the distribution of upward shortwave radiation is 252 

rather poorly simulated, with the NCEP models showing the worst correlations, and the 253 

NCAR models the best (yet explaining less than half of the variance). There is also a strong 254 

tendency to under-represent the spatial variability (normalized standard deviations less 255 

than 1) of downward shortwave radiation. This degrades simulation of net radiation, which 256 

has consistently lower correlations than downward radiation terms, yet uniformly better 257 

than upward shortwave radiation. The overlap of the spans of annual mean values from 258 
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models and observations (size of the dots) generally decrease from shortwave down to 259 

longwave down to shortwave up. 260 

Figure 3 implies discrepancies in the representation of surface albedo across models at 261 

FLUXNET2015 sites. We show a Taylor diagram for calculated albedo in Fig. 4. As there are 262 

many sites at relatively high northern latitudes that experience snow cover for some part of 263 

the year, snow albedo could specifically be a problem. However, a plot of only the JJA 264 

albedo verification shows boreal summer generally has even lower fidelity, and 265 

systematically low spatial variability, compared to the annual mean. The overlap between 266 

the spans of annual mean albedos range among the models from 16% to 38% of 267 

FLUXNET2015 sites, but for JJA they span only 13-24%. 268 

The low variability could be explained by the fact that most LSMs, whether stand-alone 269 

or coupled, have a simple parameterization of albedo based on properties of a small 270 

number of vegetation and soil types, often specified as a climatological seasonal cycle. CLM 271 

actually calculates surface albedo based on a number of properties including vegetation 272 

density and zenith angle of the sun, which may lead to the somewhat better performance of 273 

the NCAR models. As described later, the offline NCEP LSM (identified as NL) specifies a 274 

multi-year satellite-derived monthly green vegetation fraction as a boundary condition that 275 

appears in Fig. 4 to enhance variability, while its positive biases have been noted by Xia et 276 

al. (2012). Furthermore, discrepancies between grid box average albedo and local 277 

conditions at field sites, including the effect of vegetation differences and soil moisture on 278 

albedo (Zaitchik et al. 2013), could add spatial “noise” to the FLUXNET2015 values relative 279 

to what models are representing. Nevertheless, such discrepancies lead to a degradation in 280 

the representation of surface available energy that is partitioned between sensible, latent 281 

and ground heat fluxes. Even an otherwise “perfect” LSM could not produce the right values 282 
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of these fluxes if net radiation is incorrect. Coupled with errors in precipitation, which 283 

affect available soil moisture and thus Bowen ratios, LSMs are at a compounded 284 

disadvantage in simulating the surface water and energy budget terms.  285 

In Fig. 5 we correlate across the stations the mean errors in key water and energy cycle 286 

quantities and present a schematic representation of the relative coupling or 287 

connectedness exhibited between terms. This also suggests how errors in the simulation or 288 

specification of one term can propagate to others through the land-atmosphere coupling 289 

process chain (cf. Santanello et al. 2011). rs is generally larger than rp because it does not 290 

overemphasize outliers, thus is used for this comparison. Ratios show the fraction of 291 

models with correlations at the 90% confidence level, and p-values are based on the 292 

average correlation across models. Note the number of included stations varies depending 293 

on the availability of observed data (recall from Fig. 1 that a number of FLUXNET2015 sites 294 

do not allow for albedo estimations) and among models depending on whether the 295 

corresponding grid box is water or land. Furthermore, the data saved from the free-296 

running ECMWF model simulations (EC) do not allow for estimation of albedo, so 11 297 

models are compared for albedo.  298 

Unsurprisingly, we find surface net radiation errors correlate strongly to albedo errors, 299 

with 11 of 11 models registering significant correlations (two-tailed p-values < 0.05) and 300 

the multi-model average correlation across 114-118 sites has a p-value of 4x10-7. For net 301 

radiation versus precipitation, only 2 of 12 models (CL and M1) show significant 302 

correlation across 144-151 sites and p=0.55 for the multi-model average, so no direct 303 

arrow is drawn in Fig. 5. Note that precipitation errors arise not only from 304 

misrepresentation of land-atmosphere interactions, but also from the parameterization of 305 

dynamic and thermodynamic processes (so-called “model physics”) in the GCM. 306 



 

 13 

FLUXNET2015 reports both raw and Bowen-ratio corrected heat fluxes. Corrected fluxes 307 

are available at fewer than 100 of the sites (two-tailed p=0.05 for correlations |𝑟| ≳0.2, 308 

compared to |𝑟| ≳0.16 for the full set of sites), but generally correspond better to the 309 

models than uncorrected fluxes, which do not close the surface energy balance (cf. Figs. S9-310 

S12). Regardless, the same story emerges with either set of fluxes: precipitation errors 311 

correlate significantly to latent heat flux errors (p=0.02 in Fig. 5) but not sensible heat flux 312 

errors (p=0.31). Meanwhile, albedo errors are very strongly linked to sensible heat flux 313 

errors (p=7x10-5) but not latent heat flux errors (p=0.69). Evaporative fraction (EF; the 314 

fraction of sensible + latent heat flux accounted for by the latent heat flux) relates strongly 315 

to both, but more strongly to errors in albedo (p=0.003) than precipitation (p=0.05). 316 

Consistently, correlating EF errors to the heat flux errors (black two-way arrows) 317 

demonstrates more variance explained by sensible heat flux than latent heat flux. Finally, 318 

LCL errors relate strongly to precipitation errors (p=2x10-5) but are marginally significant 319 

in relation to albedo errors (p=0.06). LCL has a prevalent negative bias (Fig. S8) reflecting 320 

the positive biases in specific humidity.  321 

This analysis shows that models have troublesome errors in both the surface water and 322 

energy cycles, which make their way into the land-atmosphere coupling process chain. As a 323 

result, the degree to which weather and climate models correctly simulate feedbacks of 324 

land surface anomalies onto the atmosphere may be cast into some doubt. However, the 325 

origins of several sources of error have been identified and their alleviation can be 326 

pursued. In section 5 we will examine directly model fidelity in simulating metrics of land-327 

atmosphere coupling.  328 

 329 

4. Mean Annual Cycle 330 
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The next criterion for models, beyond simulating the annual means among 331 

FLUXNET2015 sites, is reproducing the annual cycle. The first harmonic is fit to the 12 332 

monthly means for each variable, determining phase and magnitude (half of valley-to-peak 333 

distance) using a standard Fourier transform. Errors in phase and magnitude at each 334 

station, quantified across all stations with similar metrics as the annual mean, indicate skill 335 

in simulating the annual cycle. Amplitude errors are displayed in conventional scatter 336 

diagrams (see Figs. S15-S24), but to display information for phase errors, we have 337 

configured the classical scatter diagram in a polar projection (see Figs. S25-34; the caption 338 

of Fig. S25 gives a detailed description of those plots). The whiskers in the supplemental 339 

figures again show models frequently display a smaller range of year-to-year variability 340 

than data from FLUXNET2015 sites. This may be partially explained by the scale difference 341 

(point measurements will vary more than grid-box averages) but is also likely due to the 342 

overly deterministic nature of many model parameterizations (Palmer 2012). 343 

Taylor diagrams summarize the results across models. We focus on depictions of energy 344 

budget terms, as they reveal some of the main issues among models. Figure 6 shows model 345 

performance in simulating the amplitudes of the annual cycles of net radiation, sensible 346 

and latent heat fluxes across FLUXNET2015 sites. All model products demonstrate similar 347 

skill for net radiation, clustered between 0.64-0.78 correlation and a tendency toward too 348 

large an annual cycle. Only the offline NCEP and coupled ECMWF models have a negative 349 

bias in amplitude. Latent heat flux simulations show lower skill for every model, clustering 350 

between 0.28-0.43 for correlations. At the stations where energy balance corrected fluxes 351 

are provided, correlations improve to 0.37-0.50 (not shown). The positive bias is not so 352 

pervasive for latent heat; rather it appears the positive bias in net radiation tends to be 353 

expressed in the sensible heat term. There is also a much larger spread among models for 354 
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sensible heat, both in terms of correlation (0.14-0.54) and normalized standard deviation 355 

(0.78-1.50). 356 

The models’ skill in representing the phase of the annual cycle has a similar distribution 357 

(Fig. 7). The phase of net radiation is best represented, latent and sensible heat have spatial 358 

correlations of phasing between ~0.8-0.92 with sensible heat phases having slightly lower 359 

fidelity in general. It is interesting as the general consensus is that sensible heat flux is a 360 

simpler process to model than latent heat flux, yet it has been shown in other contexts that 361 

LSMs struggle more to simulate sensible heat flux (e.g., Best et al. 2015).  362 

The Taylor diagram for the annual cycle of albedo (Fig. 8) shows very similar 363 

correlations of the yearly amplitude between models and observations (0.50-0.71) but a 364 

large range in standard deviation;  Noah v2.7.1 (NL) shows a particularly high value 365 

contributing to large RMSE. The phase is better represented by all models, but interestingly 366 

the standard deviations are uniformly over-estimated. Most models now use global MODIS-367 

based data sets of albedo as either a parameter set or for calibration of surface radiative 368 

parameterizations, so the large inter-model spread and lack of obvious clustering within 369 

families of models is surprising.  370 

 371 

5. Coupling Metrics 372 

Correlations between land surface state variables and surface fluxes (the terrestrial leg 373 

of coupling) and between land surface fluxes and atmospheric states or properties 374 

(atmospheric leg) may indicate feedbacks. For instance in the terrestrial leg, positive 375 

(negative) correlation between soil moisture and latent (sensible) heat flux implies soil 376 

moisture control of fluxes (a moisture limited situation) as opposed to energy (net 377 

radiation) limited situations where atmospheric states control the fluxes. However, the 378 
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variance in the driving term(s) must also be sufficiently large for a sensitivity of 379 

atmosphere to the land to have a consequential impact on climate, relative to other factors.  380 

A coupling index I can be constructed from terms in either leg: 𝐼 = 𝜎(𝑏)𝑟(𝑎, 𝑏) = 𝜎(𝑎) 𝑑𝑏
𝑑𝑎

 381 

where a is the forcing and b is the responding variable, 𝜎 is standard deviation in time, r is 382 

correlation in time, and the linear regression slope of b on a is a measure of the sensitivity 383 

of b to a (Dirmeyer 2011, Dirmeyer et al. 2013). 384 

Figure 9 synthesizes the performance of the various model configurations regarding 385 

two-legged coupling metrics linking soil moisture to boundary layer properties. The 386 

formulae for the coupling indices are indicated on the figure axes calculated from daily 387 

mean values. The terrestrial leg quantifies the combined sensitivity (correlation) of surface 388 

fluxes (here, latent heat flux) to land states (soil moisture) with variability (standard 389 

deviation) of the flux. The atmospheric leg links surface fluxes (sensible heat flux) to 390 

atmospheric states (LCL, which combines near surface temperature and humidity 391 

information). Larger values denote stronger feedback linkages. 392 

In each panel of Fig. 9, similar to the approach of Sippel et al. (2017), quantities are 393 

calculated for the three consecutive months that have the warmest average temperature 394 

according to the FLUXNET2015 data. We distinguish between positive values of each 395 

metric, which indicate the existence of feedbacks from land to atmosphere, from negative 396 

(no feedbacks) by coloring the four quadrants by their coupling regimes: red = both legs 397 

present and a full coupling pathway; green = the land leg is present, the atmospheric leg is 398 

missing; blue = atmospheric leg is present, land is missing; grey = neither leg present. The 399 

white dots show where FLUXNET2015 sites fall in this two-dimensional metric space. The 400 

colored dots are each model’s rendering of the metrics for the grid boxes containing the 401 

FLUXNET2015 sites; the color indicates the quadrant according to the FLUXNET 402 
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measurements. Thus, the more colored dots that fall in the quadrant with the matching 403 

color, the better the model is reproducing the global pattern of coupling regimes.  404 

The model centroid usually lies below and to the right of the observed centroid for a 405 

given coupling regime, meaning models tend to over-estimate the terrestrial coupling index 406 

(the rightward offset), yet underestimate the strength of the atmospheric leg (the 407 

downward offset). Recall the number of FLUXNET2015 sites compared is not the same for 408 

each model. The percentage in each quadrant indicates how many of the FLUXNET2015 409 

sites in that regime are correctly placed in the right quadrant. For instance, the CFS 410 

Reanalysis has 76% of the FLUXNET stations exhibiting both coupling legs (red) in the 411 

correct regime. However, there are clearly many dots of other colors also in the red 412 

quadrant, showing the model places many other stations erroneously in that regime. 413 

Interestingly, none of the models put the few sites with no warm-season coupling in the 414 

grey quadrant. Overall, the reanalyses perform best: a 56.5% overall hit rate for the fully-415 

coupled regime versus 52.8 for coupled models, and 44.0% for offline LSMs; and for the 416 

atmosphere-only coupling regime 49.2% versus 33.0% for coupled models and 31.6% for 417 

offline LSMs.  418 

We have also examined performance of the models for their simulation of the observed 419 

FLUXNET2015 correlations and standard deviations (the two terms in the coupling 420 

indices) separately. As implied previously for the terrestrial leg, there is a positive bias in 421 

correlations for all models except for ERA-Interim (Table 2). Bias in the standard deviation 422 

of latent heat fluxes across all sites is small for most models, so most of the positive bias in 423 

coupling index comes from the correlation term. The model biases are even stronger in the 424 

anti-correlation between soil moisture and sensible heat flux (not shown). However, there 425 

is generally an even greater bias in correlations for the atmospheric leg (Table 2) paired in 426 
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every model with an underrepresentation of the daily variability of the LCL. These two 427 

biases compound, leading to the strong underrepresentation of coupling in the atmospheric 428 

leg of land-atmosphere interactions. 429 

There are several caveats to note. First, the notion of calculating the atmospheric 430 

coupling leg from offline LSM simulations is only partially justifiable. It is certainly possible 431 

to calculate the correlations between surface fluxes and LCL height (which depends on 432 

near-surface meteorological data supplied as forcing to the LSM), but there is no possibility 433 

for the fluxes to affect 2m temperature or humidity. Thus, this is more of a test of model 434 

consistency than a true diagnosis of coupling.  435 

Second, estimates of the correlation component of the coupling indices from observed 436 

data must be closer to zero than the true values in nature, because random measurement 437 

errors will degrade correlations (Robock et al. 1995). Thus, it is not necessarily wrong that 438 

models show a stronger terrestrial coupling leg than FLUXNET2015 data. The degree of 439 

impact can be estimated for variables such as soil moisture, whose auto-correlation time 440 

scales are much longer than the daily data interval (cf. Dirmeyer et al. 2016) but can be 441 

difficult to estimate from small samples or for other quantities. Nevertheless, the fact that 442 

models routinely underestimate the strength of the atmospheric leg runs counter to being 443 

attributable to random observational errors at FLUXNET sites, and likely represents real 444 

model bias. 445 

Finally, the difference in scale between flux tower measurements (typically 446 

representative of conditions in an area of a square kilometer or less) and model grid-box 447 

averages (here ranging from 200–2x104 km-2) can affect statistics. Dirmeyer et al. (2016) 448 

showed there was little sensitivity of estimates of temporal variations in daily soil moisture 449 

to spatial scale differences in the model grid box range, however, the same may not be true 450 
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for other terms, or for correlations. The larger the averaging area, the smoother we should 451 

expect time series to be, potentially affecting estimation of coupling indices. 452 

 453 

6. Discussion and Summary 454 

We have confronted four different global model systems in multiple configurations (LSM 455 

only, LSM coupled to GCM, and reanalysis) with flux tower observations from 166 sites in 456 

the global FLUXNET2015 data set to determine how well they reproduce the spatial 457 

distribution of annual means and the annual cycle of state variables and terrestrial surface 458 

fluxes, and coupling indices between land and atmosphere. Returning to Table 2, there is a 459 

separation evident between the three classes of models. For the terrestrial leg of land-460 

atmosphere coupling, all models appear to overestimate correlations between soil 461 

moisture and latent heat flux, with the caveat discussed previously that correlations 462 

necessarily skew low when calculated from observed data. Nevertheless, assuming as much 463 

as a 50% reduction from true correlations, it appears the reanalyses do the best job at 464 

reproducing observed correlations, followed by the free-running models and last the 465 

uncoupled LSMs. There is a similar stratification for the standard deviation of latent heat 466 

flux: reanalyses very closely represent the observed temporal variability of this flux, while 467 

coupled models and stand-alone LSMs progressively underestimate it. For the atmospheric 468 

leg, represented by the coupling index between sensible heat flux and LCL height, all 469 

classes of models severely underestimate the correlation and the day-to-day variability in 470 

the LCL. Reanalyses again do the best job at correlations and stand-alone LSMs are the 471 

worst. Here, coupled models fare slightly better than reanalyses in representing LCL 472 

variance. Given that reanalyses are somewhat constrained by the assimilation of 473 

observations, the errors in those models do not manifest as freely, so it makes sense 474 
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reanalyses should verify the best. On the other hand, offline LSMs lack some of the coupling 475 

we are trying to gauge. For example, surface sensible and latent heat fluxes cannot affect 476 

near surface temperature and humidity in such a configuration. This prescription of near-477 

surface states interferes with the feedback processes.   478 

General characteristics of note are that scatter diagrams of model versus FLUXNET2015 479 

quantities almost always show a linear regression slope indicating a wider range of 480 

variation in the observations. Models also tend to have lower interannual variability 481 

(length of whiskers) than observations suggest. These traits are consistent with scale 482 

differences between model grid cells and the area sampled by flux towers; model grid 483 

values represent areas at least 2-4 orders of magnitude larger, which particularly affects 484 

precipitation forcing. Thus, this difference is not a concern regarding model performance 485 

per se, but rather representativeness across scales.  486 

Another general characteristic is that the models verify better against the corrected 487 

surface fluxes and quantities derived from them; wherein observed sensible and latent heat 488 

values are adjusted to close the surface energy budget. This makes sense as models close 489 

surface energy (and water) budgets by design, whereas closure is not assured in an 490 

observational setting where a number of instruments, with different calibrations and error 491 

characteristics, contribute separate terms of the surface balances. However, when the 492 

propagation of model errors through the energy and water cycles are traced (Fig. 5), EF in 493 

models shows strong sensitivity to radiation errors, implying that conservation of Bowen 494 

ratio (and thus EF) as a means to correct observed heat fluxes and close the energy balance 495 

may not be the most efficacious.  496 

There are differences that do appear to reflect general model biases. All models and 497 

configurations show a positive bias in near-surface humidity (Fig. S3, S14), downward 498 
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shortwave radiation (Figs. S4, S17) and a range of biases in downward longwave radiation 499 

(Fig. S5). Such radiation biases are a long-standing problem in global models (cf. Dirmeyer 500 

et al. 2006), and stem from problems in the parameterization of atmospheric radiative 501 

transfer, clouds and aerosols in GCMs. However, not all radiative errors are atmospheric in 502 

origin – there is clear indication that LSMs struggle to represent the spatial and temporal 503 

variability of surface albedo (Figs. 4, 8).  504 

Combined with well-known difficulties models have in simulating precipitation (Figs. 2, 505 

S6, S15, S25), it becomes extremely challenging for models to partition available energy 506 

correctly at the surface between latent, sensible and ground heat fluxes, and to reproduce 507 

the spatiotemporal patterns of relationships between soil moisture, surface fluxes and the 508 

lower troposphere. Errors in latent heat flux generally correlate significantly to 509 

precipitation errors, while sensible heat flux errors relate strongly to surface albedo errors. 510 

Evaporative fraction errors connect to both, but more strongly to the energy (albedo – 511 

sensible heat flux) pathway than the water (precipitation – latent heat flux) pathway. 512 

Height of the LCL, which has a strong negative bias across all models related to the positive 513 

humidity bias, has errors that correlate strongly to the water cycle pathway, but also to the 514 

energy cycle pathway. 515 

The spatial distributions of the annual cycles are generally well reproduced for energy 516 

budget terms, except for upward shortwave radiation, related to the albedo problems 517 

discussed earlier. However, there is a tendency for too strong a seasonal cycle in net 518 

radiation, caused by excessive summertime downward shortwave radiation, and expressed 519 

more strongly in the annual cycle of sensible heat flux than latent heat flux. Models 520 

generally do very well representing the spatial distribution of the phasing of the annual 521 
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cycle, even for precipitation (64-92% of variance explained) and soil moisture (40-61% of 522 

variance explained). 523 

Finally, despite the barriers described above to models’ capacity to represent the 524 

spatiotemporal distribution of land-atmosphere coupling, we find models often do a 525 

reasonable job. Some systematic biases are evident: models consistently over-estimate the 526 

strength of the terrestrial leg of coupling (namely, too strong a correlation between soil 527 

moisture and sensible heat fluxes), yet even more clearly underestimate the strength of the 528 

atmospheric leg (both the correlation between surface fluxes and boundary layer 529 

properties, and day-to-day variability of boundary layer properties). Random 530 

observational error tends to reduce correlations between observed quantities, so it is 531 

possible that models are not greatly overestimating the terrestrial leg of coupling, or 532 

perhaps are not overestimating it at all. However, we find the time series at most 533 

FLUXNET2015 sites are too short to robustly estimate the random error effects on 534 

correlation – perhaps in another ten years we will be able to quantify these errors. 535 

Similarly, the spatial scale differences between observations and model output may 536 

contribute to the variance differences in the atmospheric leg, but disparity in correlations 537 

between surface fluxes and LCL could only be stronger than calculated here, not weaker, 538 

because of the effect of measurement error.  539 

LSMs forced by global gridded meteorology rather than local forcing from the tower 540 

sites themselves are handicapped to some degree (cf. Chen et al. 2017). So our most 541 

confident conclusion regarding land-atmosphere coupling is that models under-represent 542 

the feedback of surface fluxes on boundary layer properties at FLUXNET2015 sites. We find 543 

this unique data set has potential for model development and parameter optimization to 544 
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alleviate biases in model configurations shown to mirror those used in forecasting 545 

applications (Orth et al. 2016, 2017). 546 

Overall, we conclude that many of the long-known problems and biases in global models 547 

of the land-atmosphere portion of the climate system still exist. Nevertheless, there is a fair 548 

degree of compensation among errors, such that model representations of land-549 

atmosphere coupling often appear fairly good. Some targets for model improvement are 550 

clear, however, as coupling linkages suggest processes where problems may lie. The 551 

representation of surface albedo (LSM) and the quantities of downward radiation at the 552 

surface (GCM) need improvement among the energy cycle terms, along with the 553 

partitioning of available energy between latent and sensible heat flux (a coupled model 554 

development problem). Precipitation errors remain large, and inconsistencies in 555 

representing soil moisture among models and between models and nature (cf. Koster et al. 556 

2009) remain stubborn issues.  557 

As one might expect, reanalyses tend to perform better, as they are more constrained by 558 

observational data. LSMs run offline also benefit from meteorological forcing that is highly 559 

observational in origin, but can be handicapped by their lack of two-way interaction with 560 

the lower troposphere. It should be clear from the various figures that individual models 561 

perform better or worse at simulating specific facets of land-atmosphere interactions. 562 

However, we emphasize here the commonalities among models more than differences. This 563 

study is not primarily intended as a model inter-comparison, but rather a multi-model 564 

attempt to draw model-independent conclusions about the current state of performance of 565 

land-atmosphere models (in various configurations) by confronting them with a new and 566 

unique observational data set.  567 
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Furthermore, this study is not a final judgement, but a first look that will hopefully 568 

catalyze accelerated development and improvement in coupled land-atmosphere modeling. 569 

Application of cross-component metrics like coupling indices can reveal prime areas for 570 

model development that are not evident from piecewise evaluation of model components. 571 

The next step is intensive, focused sensitivity studies with individual models, preferably 572 

validated in the context of coupled model systems, that will zero in on the problematic 573 

parameterizations. We may also need to revisit some of the fundamental assumptions that 574 

underpin the formulations in models (e.g., Cheng et al. 2017).  575 

Furthermore, it is clear that long-term observational monitoring is highly valuable, and 576 

that value only increases with the duration of data sets at individual sites. Greater spatial 577 

distribution of flux tower sites, especially into under-monitored regions outside middle- 578 

and high-latitudes, would further increase the overall usefulness to model development. 579 
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Table 1. Specifications for the four land and atmosphere model systems, including time 776 
span of data and spatial resolution. Two-letter abbreviations are used in subsequent 777 
figures and tables; generally for the first letter: N=NCEP, M=NASA (MERRA system), 778 
C=NCAR (Community models), E=ECMWF; for the second letter: L=LSM run “offline”, 779 
C=LSM coupled to GCM, R=reanalysis (except that two MERRA reanalyses are included, so 780 
they are labeled 1 and 2). 781 

System Offline LSM Free-Running  Reanalysis 

NOAA/ 
NCEP 

NL: Noah2.7.1 [1982-
2010] 1°x1° with forcing 
from 
Sheffield et al. (2006) 

NC: CFSv2 [48 years] 
~0.94°x0.94° fully 
coupled 
Shukla et al. (2017) 

NR: CFSR [1979-2009] 
0.31°x0.37° 
Saha et al. (2010) 

 

NASA/ 
GMAO 

ML: Catchment with 
boundary conditions 
from Mahanama et al 
(2015) plus physics 
changes 
[1980-2015] 0.625°x0.5° 
with MERRA-2 forcing 
and corrected 
precipitation  
Reichle et al. (2017b), 
GMAO (2015a,b) 

MC: GEOS5 Heracles-5 
4 p3-M3; LSM as in 
ML [2000-2015] 
0.5°x0.5° with 
observed SST 
 

M2: MERRA-2 [1980-
2015] 0.625°x0.5°  
Gelaro et al. (2017); 

M1: MERRA [1980-
2015] 0.667°x0.5° 
Rienecker et al (2011) 

NCAR CL: CLM4.5 [1991-2010] 
1.25°x0.9° with 
CRUNCEP (Viovy 2013) 
forcing 
Lawrence et al. (2011) 
 

CC: CESM 1.2.2 (CAM4 
+ CLM4.5) [1991-
2014] 1.25°x0.9° with 
climatological SST 

--none-- 

ECMWF EL: HTESSEL 43R1 
[1979-2015] TCo639 
16km 
Balsamo et al. (2015) 

EC: IFS in Athena 
Project 
[1961-2007] T1279 
interpolated to N80 
1.125°x1.125° with 
observed SST 
Kinter et al. (2013) 

ER: ERA-Interim 
[1979-2015] 0.75°x0.75° 
Dee et al. (2011) 

 782 
783 
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Table 2: The average value of the two terms used to calculate the terrestrial and 784 
atmospheric coupling indices using data from FLUXNET2015, each model, and averages 785 
from various groupings of the models. 786 
 787 

  Terrestrial Atmospheric 
  r(SM,LHF) 𝜎(LHF) r(SHF,LCL) 𝜎(LCL) 
FLUXNET2015 0.07 21.2 Wm-2 0.35 432 m 

NL 0.31 18.2 -0.22 221 
NC 0.21 21.5 0.13 412 
NR 0.22 23.1 0.21 396 
ML 0.14 15.9 0.08 366 
MC 0.13 14.0 0.02 291 
M2 0.11 21.4 0.12 287 
M1 0.21 22.1 0.18 340 
CL 0.28 19.1 0.24 191 
CC 0.18 24.1 0.15 357 
EL 0.11 21.6 0.09 371 
EC 0.19 17.7 0.08 350 
ER 0.05 18.8 0.13 291 
All 0.18 19.8 0.10 323 

LSMs 0.21 18.7 0.05 287 
Coupled 0.18 19.3 0.10 352 

Reanalyses 0.15 21.4 0.16 328 
 788 

789 
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Figure Captions: 790 

Figure 1: Location of the FLUXNET2015 Tier-1 sites used in this study. Triangles indicate 791 

no upward shortwave radiation measurements available to estimate surface albedo, 792 

pluses mean no Bowen ratio corrected surface heat fluxes provided, exes indicate neither 793 

albedo nor corrected heat fluxes are available, circles have both. Color of the symbol 794 

indicates the length of data series available. 795 

Figure 2: Scatter of annual total precipitation measurements at FLUXNET2015 sites 796 

(abscissa) to estimates (ordinate) from gridded observationally-based precipitation 797 

analyses (top two rows) or reanalyses constrained by data assimilation (bottom row) 798 

using the value from the grid box containing the FLUXNET2015 site location (unless data 799 

are missing or indicated to be an all-ocean grid box). Dash-dotted diagonal grey line 800 

indicates X=Y. Colors indicate years of available data from each FLUXNET2015 site, 801 

whiskers span range of annual totals from FLUXNET2015 (horizontal) or gridded 802 

estimates (vertical) for years where data sets overlap. Purple line is the best-fit linear 803 

regression of Y on X. Statistics are explained in the text. 804 

Figure 3: Taylor diagram of annual mean surface radiation terms for the 12 indicated 805 

models verified against FLUXNET2015 sites for downward solar radiation (black), 806 

downward longwave radiation (red), upward shortwave radiation (blue) and net 807 

radiation (green). Dot colors indicate mean bias and size shows percentage of stations 808 

where the range of the annual totals from the model overlaps the span from 809 

FLUXNET2015 sites (also presented in tabular form in the upper right). 810 

Figure 4: As in Fig. 3 for surface albedo; annual mean (black) and boreal summer (JJA) 811 

mean (red). 812 
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Figure 5: Propagation of errors estimated from their rank correlations among precipitation 813 

(P), height of the lifting condensation level (LCL), evaporative fraction (EF), sensible and 814 

latent heat flux (SH & LH), surface albedo (𝛼) and net radiation (RNet) across 815 

FLUXNET2015 stations. Ratios show the number of models out of 11 (correlations 816 

involving 𝛼) or 12 (other variables) with p-values below 0.10; p-value shown is based on 817 

the average of correlations across all models. Widths of arrows follow significance of 818 

correlations and no arrows are drawn where p-values are large. The wide double arrows 819 

between EF and heat fluxes denote p-values < 10-12.  820 

Figure 6: As in Fig. 3 for the magnitude of the annual cycle (first harmonic calculated from 821 

monthly means) of sensible heat flux (orange), latent heat flux (cyan) and net radiation at 822 

the surface (green). 823 

Figure 7: As in Fig. 6 for phase of the annual cycle of sensible heat flux (orange) and latent 824 

heat flux (cyan) and net radiation at the surface (green). 825 

Figure 8: As in Fig. 6 for the magnitude (brown) and phase (purple) of the annual cycle of 826 

surface albedo. 827 

Figure 9: Distribution of coupling indices for the terrestrial (x-axis) and atmospheric (y-828 

axis) legs for the warmest consecutive 3 months of the annual cycle for FLUXNET2015 829 

sites (white dots; identical in each panel) and for each model as indicated. Colors of dots 830 

indicate in which quadrant that FLUXNET2015 site lies: red = both indices positive; 831 

green = terrestrial positive, atmospheric negative; blue = atmospheric positive, 832 

terrestrial negative; grey = both negative. The white circle indicates the centroid of all 833 

FLUXNET2015 stations that are in that quadrant, connected by a colored dotted line to a 834 

colored circle that is the centroid of the same stations’ corresponding grid boxes as 835 

simulated by the model. Numbers in the corners of each quadrant show the number of 836 
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points in that quadrant according to the model and FLUXNET2015 data, separated by a 837 

colon, and the percentage of the FLUXNET2015 sites within that quadrant that the model 838 

placed in the same quadrant. The percentage in red at the upper right of each panel is the 839 

overall percentage of sites where model and FLUXNET2015 agree on the quadrant. 840 

841 
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 842 

Figure 1: Location of the FLUXNET2015 Tier-1 sites used in this study. Triangles indicate 843 
no upward shortwave radiation measurements available to estimate surface albedo, pluses 844 
mean no Bowen ratio corrected surface heat fluxes provided, exes indicate neither albedo 845 
nor corrected heat fluxes are available, circles have both. Color of the symbol indicates the 846 
length of data series available. 847 

848 
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 849 

Figure 2: Scatter of annual total precipitation measurements at FLUXNET2015 sites 850 
(abscissa) to estimates (ordinate) from gridded observationally-based precipitation 851 
analyses (top two rows) or reanalyses constrained by data assimilation (bottom row) 852 
using the value from the grid box containing the FLUXNET2015 site location (unless data 853 
are missing or indicated to be an all-ocean grid box). Dash-dotted diagonal grey line 854 
indicates X=Y. Colors indicate years of available data from each FLUXNET2015 site, 855 
whiskers span range of annual totals from FLUXNET2015 (horizontal) or gridded 856 
estimates (vertical) for years where data sets overlap. Purple line is the best-fit linear 857 
regression of Y on X. Statistics are explained in the text. 858 

859 



 

 40 

 860 

Figure 3: Taylor diagram of annual mean surface radiation terms for the 12 indicated 861 
models verified against FLUXNET2015 sites for downward solar radiation (black), 862 
downward longwave radiation (red), upward shortwave radiation (blue) and net radiation 863 
(green). Dot colors indicate mean bias and size shows percentage of stations where the 864 
range of the annual totals from the model overlaps the span from FLUXNET2015 sites (also 865 
presented in tabular form in the upper right). 866 
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 869 

Figure 4: As in Fig. 3 for surface albedo; annual mean (black) and boreal summer (JJA) 870 
mean (red). 871 

872 
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 873 

Figure 5: Propagation of errors estimated from their rank correlations among precipitation 874 
(P), height of the lifting condensation level (LCL), evaporative fraction (EF), sensible and 875 
latent heat flux (SH & LH), surface albedo (𝛼) and net radiation (RNet) across 876 
FLUXNET2015 stations. Ratios show the number of models out of 11 (correlations 877 
involving 𝛼) or 12 (other variables) with p-values below 0.10; p-value shown is based on 878 
the average of correlations across all models. Widths of arrows follow significance of 879 
correlations and no arrows are drawn where p-values are large. The wide double arrows 880 
between EF and heat fluxes denote p-values < 10-12.  881 

882 
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 883 

Figure 6: As in Fig. 3 for the magnitude of the annual cycle (first harmonic calculated from 884 
monthly means) of sensible heat flux (orange), latent heat flux (cyan) and net radiation at 885 
the surface (green). 886 

887 
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 888 

Figure 7: As in Fig. 6 for phase of the annual cycle of sensible heat flux (orange) latent heat 889 
flux (cyan), and net radiation at the surface (green). 890 

891 
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 892 

Figure 8: As in Fig. 6 for the magnitude (brown) and phase (purple) of the annual cycle of 893 
surface albedo. 894 

895 
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Figure 9: Distribution of coupling indices for the terrestrial (x-axis) and atmospheric (y-896 
axis) legs for the warmest consecutive 3 months of the annual cycle for FLUXNET2015 sites 897 
(white dots; identical in each panel) and for each model as indicated. Colors of dots indicate 898 
in which quadrant that FLUXNET2015 site lies: red = both indices positive; green = 899 
terrestrial positive, atmospheric negative; blue = atmospheric positive, terrestrial 900 
negative; grey = both negative. The white circle indicates the centroid of all FLUXNET2015 901 
stations that are in that quadrant, connected by a colored dotted line to a colored circle that 902 
is the centroid of the same stations’ corresponding grid boxes as simulated by the model. 903 
Numbers in the corners of each quadrant show the number of points in that quadrant 904 
according to the model and FLUXNET2015 data, separated by a colon, and the percentage 905 
of the FLUXNET2015 sites within that quadrant that the model placed in the same 906 
quadrant. The percentage in red at the upper right of each panel is the overall percentage of 907 
sites where model and FLUXNET2015 agree on the quadrant.  908 
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